Exercise 6

Find the general solution for the following second order ODEs:

$$
u^{\prime \prime}+4 u=0
$$

Solution

This is a homogeneous linear ODE with constant coefficients, so the solution is of the form, $u=e^{r x}$.

$$
u=e^{r x} \quad \rightarrow \quad u^{\prime}=r e^{r x} \quad \rightarrow \quad u^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}+4 e^{r x}=0 .
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+4=0
$$

Factor the left side.

$$
(r+2 i)(r-2 i)=0
$$

$r=-2 i$ or $r=2 i$, so the general solution is

$$
u(x)=C_{1} e^{-2 i x}+C_{2} e^{2 i x}
$$

But this can be written in terms of sine and cosine by using Euler's formula. Therefore,

$$
u(x)=A \cos 2 x+B \sin 2 x .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =-2 A \sin 2 x+2 B \cos 2 x \\
u^{\prime \prime} & =-4 A \cos 2 x-4 B \sin 2 x .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}+4 u=-4 A \cos 2 x-4 B \sin 2 x+4(A \cos 2 x+B \sin 2 x)=0,
$$

which means this is the correct solution.

